"

欢迎来到亚博yabo24_官网首页(yabovip6666.cn)全新升级娱乐网站。亚博yabo24_官网首页综合各种在线游戏于一站式的大型游戏平台,经营多年一直为大家提供安全稳定的游戏环境,亚博yabo24_官网首页致力于提供全球客户有价值的游戏,为用户提供优质服务。

    <sub id="rfprx"></sub>

    <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>

    <form id="rfprx"></form>
    <address id="rfprx"><dfn id="rfprx"></dfn></address><sub id="rfprx"></sub>

    <sub id="rfprx"><var id="rfprx"></var></sub>

      <sub id="rfprx"><dfn id="rfprx"></dfn></sub><form id="rfprx"><dfn id="rfprx"></dfn></form>
      <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

      <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

      <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

      <address id="rfprx"><listing id="rfprx"><ins id="rfprx"></ins></listing></address>

      <sub id="rfprx"></sub>

      <address id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></address>

      <address id="rfprx"><var id="rfprx"></var></address>
      <address id="rfprx"><dfn id="rfprx"></dfn></address>
      <sub id="rfprx"></sub>

      <sub id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></sub><form id="rfprx"><dfn id="rfprx"></dfn></form>

      <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>
          <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>
          <sub id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></sub>
          <sub id="rfprx"><dfn id="rfprx"></dfn></sub>

            <sub id="rfprx"><var id="rfprx"></var></sub>
            "
            将本页翻译成中文
            您现在的位置:首页> 外文期刊>Industrial Electronics, IEEE Transactions on >文献详情
            【6h】

            A Novel Dual Iterative -Learning Method for Optimal Battery Management in Smart Residential Environments

            【摘要】In this paper, a novel iterative -learning method called “dual iterative -learning algorithm” is developed to solve the optimal battery management and control problem in smart residential environments. In the developed algorithm, two iterations are introduced, which are internal and external iterations, where internal iteration minimizes the total cost of power loads in each period, and the external iteration makes the iterative -function converge to the optimum. Based on the dual iterative -learning algorithm, the convergence property of the iterative -learning method for the optimal battery management and control problem is proven for the first time, which guarantees that both the iterative -function and the iterative control law reach the optimum. Implementing the algorithm by neural networks, numerical results and comparisons are given to illustrate the performance of the developed algorithm.

            【期刊名称】 Industrial Electronics, IEEE Transactions on

            【作者】Wei, Qinglai;Liu, Derong;Shi, Guang;

            【作者单位】;

            【收录信息】;

            【年(卷),期】2015(62),4

            【年度】2015

            【页码】2509-2518

            【总页数】10

            【原文格式】PDF

            【正文语种】eng

            【中图分类】;

            【关键词】$Q$-learning;Adaptive critic designs;Q-learning;adaptive dynamic programming;adaptive dynamic programming (ADP);approximate dynamic programming;neural networks;optimal control;smart grid;

            联系方式:18141920177 (微信同号)

            客服邮箱:kefu@zhangqiaokeyan.com

            京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司?版权所有
            • 客服微信

            • 服务号

            亚博yabo24_官网首页

              <sub id="rfprx"></sub>

              <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>

              <form id="rfprx"></form>
              <address id="rfprx"><dfn id="rfprx"></dfn></address><sub id="rfprx"></sub>

              <sub id="rfprx"><var id="rfprx"></var></sub>

                <sub id="rfprx"><dfn id="rfprx"></dfn></sub><form id="rfprx"><dfn id="rfprx"></dfn></form>
                <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

                <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

                <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

                <address id="rfprx"><listing id="rfprx"><ins id="rfprx"></ins></listing></address>

                <sub id="rfprx"></sub>

                <address id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></address>

                <address id="rfprx"><var id="rfprx"></var></address>
                <address id="rfprx"><dfn id="rfprx"></dfn></address>
                <sub id="rfprx"></sub>

                <sub id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></sub><form id="rfprx"><dfn id="rfprx"></dfn></form>

                <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>
                    <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>
                    <sub id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></sub>
                    <sub id="rfprx"><dfn id="rfprx"></dfn></sub>

                      <sub id="rfprx"><var id="rfprx"></var></sub>