"

欢迎来到亚博yabo24_官网首页(yabovip6666.cn)全新升级娱乐网站。亚博yabo24_官网首页综合各种在线游戏于一站式的大型游戏平台,经营多年一直为大家提供安全稳定的游戏环境,亚博yabo24_官网首页致力于提供全球客户有价值的游戏,为用户提供优质服务。

    <sub id="rfprx"></sub>

    <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>

    <form id="rfprx"></form>
    <address id="rfprx"><dfn id="rfprx"></dfn></address><sub id="rfprx"></sub>

    <sub id="rfprx"><var id="rfprx"></var></sub>

      <sub id="rfprx"><dfn id="rfprx"></dfn></sub><form id="rfprx"><dfn id="rfprx"></dfn></form>
      <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

      <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

      <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

      <address id="rfprx"><listing id="rfprx"><ins id="rfprx"></ins></listing></address>

      <sub id="rfprx"></sub>

      <address id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></address>

      <address id="rfprx"><var id="rfprx"></var></address>
      <address id="rfprx"><dfn id="rfprx"></dfn></address>
      <sub id="rfprx"></sub>

      <sub id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></sub><form id="rfprx"><dfn id="rfprx"></dfn></form>

      <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>
          <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>
          <sub id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></sub>
          <sub id="rfprx"><dfn id="rfprx"></dfn></sub>

            <sub id="rfprx"><var id="rfprx"></var></sub>
            "
            将本页翻译成中文
            您现在的位置:首页> 外文学位 >文献详情

            【6h】 Bounding the number of solutions to tetranomial Thue equations .

            【摘要】Let F(x, y) be an irreducible binary form of degree at least three with integer co-efficients. We consider the problem of bounding the number of integer solutions (p, q) to the Thue equation |F(x, y)| = 1. Our particular area of study is the case where F(x, y ) is a tetranomial, that is, it has exactly four non-zero coefficients. Building on ideas developed by Thomas in his work on three-term Thue equations, we prove our main result:;Theorem. Let F(x, y) be an irreducible binary form given by F&parl0;x,y&parr0;=a0xn+r0 xmyn-m-s0xky n-k+t0yn, with n > m > k > 0, a0 ∈ Z+, and r0, s0, t 0 ∈ Z {0}, such that n ≥ 50 and for C = 0.99, Ca0n > |r0|m and C|t0|n > | s0|(n -- k). Then, the equation |F(x, y)| = 1 has at most 36 solutions (p, q) ∈ Z2 with |pq| ≥ 2 (where (p, q) and ( --p, --q) are counted as a single solution). Moreover, if n is odd, then there are at most 30 such solutions .;Our proofs use a combination of classical arguments, later developed by Bombieri, Mueller, and Schmidt, and more recent methods used by Thomas. More specifically, we apply the Thue-Siegel principle and a strong gap principle to bound the number of large solutions, and we adapt Thomas's approach, which involves solving a Diophantine approximation problem and using another gap principle, to bound the number of small solutions. Throughout, we develop additional techniques needed for dealing with the distinct complexities inherent in working with tetranomial Thue equations.

            【原文格式】PDF

            联系方式:18141920177 (微信同号)

            客服邮箱:kefu@zhangqiaokeyan.com

            京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-1 六维联合信息科技 (北京) 有限公司?版权所有
            • 客服微信

            • 服务号

            亚博yabo24_官网首页

              <sub id="rfprx"></sub>

              <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>

              <form id="rfprx"></form>
              <address id="rfprx"><dfn id="rfprx"></dfn></address><sub id="rfprx"></sub>

              <sub id="rfprx"><var id="rfprx"></var></sub>

                <sub id="rfprx"><dfn id="rfprx"></dfn></sub><form id="rfprx"><dfn id="rfprx"></dfn></form>
                <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

                <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

                <sub id="rfprx"><dfn id="rfprx"><ins id="rfprx"></ins></dfn></sub>

                <address id="rfprx"><listing id="rfprx"><ins id="rfprx"></ins></listing></address>

                <sub id="rfprx"></sub>

                <address id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></address>

                <address id="rfprx"><var id="rfprx"></var></address>
                <address id="rfprx"><dfn id="rfprx"></dfn></address>
                <sub id="rfprx"></sub>

                <sub id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></sub><form id="rfprx"><dfn id="rfprx"></dfn></form>

                <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>
                    <thead id="rfprx"><var id="rfprx"><output id="rfprx"></output></var></thead>
                    <sub id="rfprx"><dfn id="rfprx"><output id="rfprx"></output></dfn></sub>
                    <sub id="rfprx"><dfn id="rfprx"></dfn></sub>

                      <sub id="rfprx"><var id="rfprx"></var></sub>